https://doi.org/10.1099/vir.0.83412-0 · Full text
Journal: Journal of General Virology, 2008, №1, p.288-296
Publisher: Microbiology Society
Authors: Kelly E. Seaton, Charles D. Smith
Abstract
Myristoylation of the human immunodeficiency virus type 1 (HIV-1) proteins Gag and Nef byN-myristoyltransferase (NMT) is a key process in retroviral replication and virulence, yet remains incompletely characterized. Therefore, the roles of the two isozymes, NMT1 and NMT2, in myristoylating Gag and Nef were examined using biochemical and molecular approaches. Fluorescently labelled peptides corresponding to the N terminus of HIV-1 Gag or Nef were myristoylated by recombinant human NMT1 and NMT2. Kinetic analyses indicated that NMT1 and NMT2 had 30- and 130-fold lowerK<jats:sub>m</jats:sub>values for Nef than Gag, respectively. Values forK<jats:sub>cat</jats:sub>indicated that, once Gag or Nef binds to the enzyme, myristoylation by NMT1 and NMT2 proceeds at comparable rates. Furthermore, the catalytic efficiencies for the processing of Gag by NMT1 and NMT2 were equivalent. In contrast, NMT2 had approximately 5-fold higher catalytic efficiency for the myristoylation of Nef than NMT1. Competition experiments confirmed that the Nef peptide acts as a competitive inhibitor for the myristoylation of Gag. Experiments using full-length recombinant Nef protein also indicated a lowerK<jats:sub>m</jats:sub>for Nef myristoylation by NMT2 than NMT1. Small interfering RNAs were used to selectively deplete NMT1 and/or NMT2 from HEK293T cells expressing a recombinant Nef–sgGFP fusion protein. Depletion of NMT1 had minimal effect on the intracellular distribution of Nef–sgGFP, whereas depletion of NMT2 altered distribution to a diffuse, widespread pattern, mimicking that of a myristoylation-deficient mutant of Nef–sgGFP. Together, these findings indicate that Nef is preferentially myristoylated by NMT2, suggesting that selective inhibition of NMT2 may provide a novel means of blocking HIV virulence.
List of references
- Bentham, Role of myristoylation and N-terminal basic residues in membrane association of the human immunodeficiency virus type 1 Nef protein, J Gen Virol, № 87, с. 563
https://doi.org/10.1099/vir.0.81200-0 - Bohlen, Fluorometric assay of proteins in the nanogram range, Arch Biochem Biophys, № 155, с. 213
https://doi.org/10.1016/S0003-9861(73)80023-2 - Bouamr, Role of myristylation in HIV-1 Gag assembly, Biochemistry, № 42, с. 6408
https://doi.org/10.1021/bi020692z - Bryant, Myristoylation-dependent replication and assembly of human immunodeficiency virus 1, Proc Natl Acad Sci U S A, № 87, с. 523
https://doi.org/10.1073/pnas.87.2.523 - Bryant, Replication of human immunodeficiency virus 1 and Moloney murine leukemia virus is inhibited by different heteroatom-containing analogs of myristic acid, Proc Natl Acad Sci U S A, № 86, с. 8655
https://doi.org/10.1073/pnas.86.22.8655 - Bryant, Incorporation of 12-methoxydodecanoate into the human immunodeficiency virus 1 Gag polyprotein precursor inhibits its proteolytic processing and virus production in a chronically infected human lymphoid cell line, Proc Natl Acad Sci U S A, № 88, с. 2055
https://doi.org/10.1073/pnas.88.6.2055 - Coffin, Retroviruses electronic version
- Devadas, Substrate specificity of Saccharomyces cerevisiae myristoyl-CoA: protein N -myristoyltransferase. Analysis of fatty acid analogs containing carbonyl groups, nitrogen heteroatoms, and nitrogen heterocycles in an in vitro enzyme assay and subsequent identification of inhibitors of human immunodeficiency virus I replication, J Biol Chem, № 267, с. 7224
https://doi.org/10.1016/S0021-9258(18)42509-4 - Ducker, Two N -myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis, Mol Cancer Res, № 3, с. 463
https://doi.org/10.1158/1541-7786.MCR-05-0037 - Fackler, Functional characterization of HIV-1 Nef mutants in the context of viral infection, Virology, № 351, с. 322
https://doi.org/10.1016/j.virol.2006.03.044 - French, Cyclohexyl-octahydro-pyrrolo[1,2- α ]pyrazine-based inhibitors of human N -myristoyltransferase-1, J Pharmacol Exp Ther, № 309, с. 340
https://doi.org/10.1124/jpet.103.061572 - Garcia, Downregulation of cell surface CD4 by Nef, Res Virol, № 143, с. 52
https://doi.org/10.1016/S0923-2516(06)80080-4 - Giang, A second mammalian N -myristoyltransferase, J Biol Chem, № 273, с. 6595
https://doi.org/10.1074/jbc.273.12.6595 - Gottlinger, Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1, Proc Natl Acad Sci U S A, № 86, с. 5781
https://doi.org/10.1073/pnas.86.15.5781 - Greenberg, Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation, EMBO J, № 16, с. 6964
https://doi.org/10.1093/emboj/16.23.6964 - Greenway, HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication, J Biosci, № 28, с. 323
https://doi.org/10.1007/BF02970151 - Guy, HIV F/3′ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product, Nature, № 330, с. 266
https://doi.org/10.1038/330266a0 - Harris, The role of myristoylation in the interactions between human immunodeficiency virus type I Nef and cellular proteins, Biochem Soc Trans, № 23, с. 557
https://doi.org/10.1042/bst0230557 - Harris, HIV: a new role for Nef in the spread of HIV, Curr Biol, № 9, с. R459
https://doi.org/10.1016/S0960-9822(99)80282-6 - Harris, Myristoylation-dependent binding of HIV-1 Nef to CD4, J Mol Biol, № 241, с. 136
https://doi.org/10.1006/jmbi.1994.1483 - Heuckeroth, Altered membrane association of p60v-src and a murine 63-kDa N -myristoyl protein after incorporation of an oxygen-substituted analog of myristic acid, Proc Natl Acad Sci U S A, № 86, с. 5262
https://doi.org/10.1073/pnas.86.14.5262 - Hill, Human N -myristoyltransferases form stable complexes with lentiviral Nef and other viral and cellular substrate proteins, J Virol, № 79, с. 1133
https://doi.org/10.1128/JVI.79.2.1133-1141.2005 - Jacobs, The HIV-1 Gag precursor Pr55gag synthesized in yeast is myristoylated and targeted to the plasma membrane, Gene, № 79, с. 71
https://doi.org/10.1016/0378-1119(89)90093-0 - Kaminchik, Cellular distribution of HIV type 1 Nef protein: identification of domains in Nef required for association with membrane and detergent-insoluble cellular matrix, AIDS Res Hum Retroviruses, № 10, с. 1003
https://doi.org/10.1089/aid.1994.10.1003 - Lindwasser, Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding, Proc Natl Acad Sci U S A, № 99, с. 13037
https://doi.org/10.1073/pnas.212409999 - Miller, The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages, J Exp Med, № 179, с. 101
https://doi.org/10.1084/jem.179.1.101 - Olszewski, Guanidine alkaloid analogs as inhibitors of HIV-1 Nef interactions with p53, actin, and p56lck, Proc Natl Acad Sci U S A, № 101, с. 14079
https://doi.org/10.1073/pnas.0406040101 - Pal, Myristoylation of Gag proteins of HIV-1 plays an important role in virus assembly, AIDS Res Hum Retroviruses, № 6, с. 721
https://doi.org/10.1089/aid.1990.6.721 - Peng, Deletion of N-terminal myristoylation site of HIV Nef abrogates both MHC-1 and CD4 down-regulation, Immunol Lett, № 78, с. 195
https://doi.org/10.1016/S0165-2478(01)00250-4 - Rocque, A comparative analysis of the kinetic mechanism and peptide substrate specificity of human and Saccharomyces cerevisiae myristoyl-CoA : protein N -myristoyltransferase, J Biol Chem, № 268, с. 9964
https://doi.org/10.1016/S0021-9258(18)82159-7 - Scarlata, Role of HIV-1 Gag domains in viral assembly, Biochim Biophys Acta, № 1614, с. 62
https://doi.org/10.1016/S0005-2736(03)00163-9 - Shaheduzzaman, Effects of HIV-1 Nef on cellular gene expression profiles, J Biomed Sci, № 9, с. 82
https://doi.org/10.1007/BF02256581 - Takamune, Blockage of HIV-1 production through inhibition of proviral DNA synthesis by N , O -didecanoyl serinal dimethylacetal, IUBMB Life, № 48, с. 311
https://doi.org/10.1080/713803526 - Takamune, Down-regulation of N -myristoyl transferase expression in human T-cell line CEM by human immunodeficiency virus type-1 infection, FEBS Lett, № 506, с. 81
https://doi.org/10.1016/S0014-5793(01)02892-7 - Takamune, Novel strategy for anti-HIV-1 action: selective cytotoxic effect of N- myristoyltransferase inhibitor on HIV-1-infected cells, FEBS Lett, № 527, с. 138
https://doi.org/10.1016/S0014-5793(02)03199-X - Tashiro, Antimyristoylation of the gag proteins in the human immunodeficiency virus-infected cells with N -myristoyl glycinal diethylacetal resulted in inhibition of virus production, Biochem Biophys Res Commun, № 165, с. 1145
https://doi.org/10.1016/0006-291X(89)92722-8 - Varner, A fluorescence-based high performance liquid chromatographic method for the characterization of palmitoyl acyl transferase activity, Anal Biochem, № 308, с. 160
https://doi.org/10.1016/S0003-2697(02)00212-9 - Varner, Characterization of human palmitoyl-acyl transferase activity using peptides that mimic distinct palmitoylation motifs, Biochem J, № 373, с. 91
https://doi.org/10.1042/bj20021598 - Veronese, Biochemical and immunological analysis of human immunodeficiency virus gag gene products p17 and p24, J Virol, № 62, с. 795
https://doi.org/10.1128/JVI.62.3.795-801.1988 - Welker, Virion incorporation of human immunodeficiency virus type 1 Nef is mediated by a bipartite membrane-targeting signal: analysis of its role in enhancement of viral infectivity, J Virol, № 72, с. 8833
https://doi.org/10.1128/JVI.72.11.8833-8840.1998 - Yang, N -myristoyltransferase 1 is essential in early mouse development, J Biol Chem, № 280, с. 18990
https://doi.org/10.1074/jbc.M412917200 - Yu, Effect of myristoylation on p27nef subcellular distribution and suppression of HIV-LTR transcription, Virology, № 187, с. 46
https://doi.org/10.1016/0042-6822(92)90293-X - Zhou, Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids, J Virol, № 68, с. 2556
https://doi.org/10.1128/JVI.68.4.2556-2569.1994
Publications that cite this publication
Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity
Irena Corbic Ramljak, Julia Stanger, Antonio Real-Hohn, Dominik Dreier, Laurin Wimmer, Monika Redlberger-Fritz, Wolfgang Fischl, Karin Klingel, Marko D. Mihovilovic, Dieter Blaas, Heinrich Kowalski
https://doi.org/10.1371/journal.ppat.1007203 · Full text
2018, PLOS Pathogens, №8, p.e1007203
Scopus
WoS
Crossref citations:24
N-myristoyltransferases inhibitory activity of ellagitannins from Terminalia bentzoë (L.) L. f. subsp. bentzoë
Cécile Apel, Jérôme Bignon, María Concepción Garcia-Alvarez, Sarah Ciccone, Patricia Clerc, Isabelle Grondin, Emmanuelle Girard-Valenciennes, Jacqueline Smadja, Philippe Lopes, Michel Frédérich, Fanny Roussi, Thierry Meinnel, Carmela Giglione, Marc Litaudon
https://doi.org/10.1016/j.fitote.2018.10.014
2018, Fitoterapia, p.91-95
Scopus
WoS
Crossref citations:6
An improved method and cost effective strategy for soluble expression and purification of human N-myristoyltransferase 1 in E. coli
Sujeet Kumar, Rajendra K. Sharma
https://doi.org/10.1007/s11010-014-2029-z
2014, Molecular and Cellular Biochemistry, №1-2, p.175-186
Scopus
WoS
Crossref citations:5
A new, robust, and nonradioactive approach for exploring N-myristoylation
Francesca Rampoldi, Roger Sandhoff, Robert W. Owen, Hermann-Josef Gröne, Stefan Porubsky
https://doi.org/10.1194/jlr.d026997 · Full text
2012, Journal of Lipid Research, №11, p.2459-2468
Scopus
WoS
Crossref citations:10
Acide myristique : nouvelles fonctions de régulation et de signalisation
Erwan Beauchamp, Vincent Rioux, Philippe Legrand
https://doi.org/10.1051/medsci/200925157 · Full text
2009, médecine/sciences, №1, p.57-63
Crossref citations:11
Molecular Mechanism of Arenavirus Assembly and Budding
Shuzo Urata, Jiro Yasuda
https://doi.org/10.3390/v4102049 · Full text
2012, Viruses, №10, p.2049-2079
Scopus
WoS
Crossref citations:36
Protein myristoylation in health and disease
Megan H. Wright, William P. Heal, David J. Mann, Edward W. Tate
https://doi.org/10.1007/s12154-009-0032-8 · Full text
2009, Journal of Chemical Biology, №1, p.19-35
Scopus
Crossref citations:159
Post-translational myristoylation: Fat matters in cellular life and death
Dale D.O. Martin, Erwan Beauchamp, Luc G. Berthiaume
https://doi.org/10.1016/j.biochi.2010.10.018
2011, Biochimie, №1, p.18-31
Scopus
WoS
Crossref citations:142
Global profiling of co- and post-translationally N-myristoylated proteomes in human cells
Emmanuelle Thinon, Remigiusz A. Serwa, Malgorzata Broncel, James A. Brannigan, Ute Brassat, Megan H. Wright, William P. Heal, Anthony J. Wilkinson, David J. Mann, Edward W. Tate
https://doi.org/10.1038/ncomms5919 · Full text
2014, Nature Communications, №1
Scopus
WoS
Crossref citations:173
Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases
Igor José dos Santos Nascimento, Misael de Azevedo Teotônio Cavalcanti, Ricardo Olimpio de Moura
https://doi.org/10.1016/j.ejmech.2023.115550 ·
2023, European Journal of Medicinal Chemistry, p.115550
Scopus
WoS
Crossref citations:1
Find all citations of the publication